12 research outputs found

    Fungal Planet description sheets: 1042–1111

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.)from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.)on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.)from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes

    Fungal Planet description sheets: 1042–1111

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.)from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.)on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.)from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes

    Arsenic in groundwater and sediments from La Pampa Province, Argentina

    Get PDF
    Arsenic in pumped groundwaters from the Quaternary loess aquifer of northern La Pampa, Argentina, has concentrations in the range <4–5300 μg/L, most being present as the oxidised arsenate form. Other anions and oxyanions (B, F, Mo, V, U) also often have high con-centrations. These trace elements show positive correlations with both pH and alkalinity. Arse-nic concentrations are particularly high in pumped groundwaters and porewaters beneath small topographic depressions which act as zones of seasonal discharge and restricted groundwater flow. Evaporation of water in these small internal drainage systems can be significant but is not responsible for the observed high As concentrations. Accumulation of As (dissolved and sorbed) through flow towards the depression and lack of flushing are likely controls. The As may be derived from a number of minerals but sorption/desorption reactions involving Fe ox-ides and possibly Mn oxides are considered important controls on the mobility of As, sorption being weakest at high pH. Modelling suggests that competition from other anions, especially vanadate, for binding sites on Fe oxides can further enhance the concentrations of As in the groundwater

    Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina

    No full text
    Groundwaters from Quaternary loess aquifers in northern La Pampa Province of central Argentina have significant quality problems due to high concentrations of potentially harmful elements such as As, F, NO3-N, B, Mo, Se and U and high salinity. The extent of the problems is not well-defined, but is believed to cover large parts of the Argentine Chaco-Pampean Plain, over an area of perhaps 106 km2. Groundwaters from La Pampa have a very large range of chemical compositions and spatial variability is considerable over distances of a few km. Dissolved As spans over 4 orders of magnitude (<4–5300 μg l−1) and concentrations of F have a range of 0.03–29 mg l−1, B of 0.5–14 mg l−l, V of 0.02–5.4 mg l−1, NO3–N of <0.2–140 mg l−1, Mo of 2.7–990 μg l−1 and U of 6.2–250 μg l−1. Of the groundwaters investigated, 95% exceed 10 μg As l−1 (the WHO guideline value) and 73% exceed 50 μg As l−1 (the Argentine national standard). In addition, 83% exceed the WHO guideline value for F (1.5 mg l−1), 99% for B (0.5 mg l−1), 47% for NO3-N (11.3 mg l−1), 39% for Mo (70 μg l−1), 32% for Se (10 μg l−1) and 100% for U (2 μg l−1). Total dissolved solids range between 730 and 11400 mg l−1, the high values resulting mainly from evaporation under ambient semi-arid climatic conditions. The groundwaters are universally oxidising with high dissolved-O2 concentrations. Groundwater pHs are neutral to alkaline (7.0–8.7). Arsenic is present in solution predominantly as As(V). Groundwater As correlates positively with pH, alkalinity (HCO3), F and V. Weaker correlations are also observed with B, Mo, U and Be. Desorption of these elements from metal oxides, especially Fe and Mn oxides under the high-pH conditions is considered an important control on their mobilisation. Mutual competition between these elements for sorption sites on oxide minerals may also have enhanced their mobility. Weathering of primary silicate minerals and accessory minerals such as apatite in the loess and incorporated volcanic ash may also have contributed a proportion of the dissolved As and other trace elements. Concentrations of As and other anions and oxyanions appear to be particularly high in groundwaters close to low-lying depressions which act as localised groundwater-discharge zones. Concentrations up to 7500 μg l−1 were found in saturated-zone porewaters extracted from a cored borehole adjacent to one such depression. Concentrations are also relatively high where groundwater is abstracted from close to the water table, presumably because this zone is a location of more active weathering reactions. The development of groundwaters with high pH and alkalinity results from silicate and carbonate reactions, facilitated by the arid climatic conditions. These factors, together with the young age of the loess sediments and slow groundwater flow have enabled the accumulation of the high concentrations of As and other elements in solution without significant opportunity for flushing of the aquifer to enable their removal

    Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina

    No full text
    Groundwater from the Quaternary loess aquifer of La Pampa, central Argentina, has significant problems with high concentrations of As (up to 5300 μg L−1) as well as other potentially toxic trace elements such as F, B, Mo, U, Se and V. Total As concentrations in 45 loess samples collected from the aquifer have a range of 3–18 mg kg−1 with a mean of 8 mg kg−1. These values are comparable to world-average sediment As concentrations. Five samples of rhyolitic ash from the area have As concentrations of 7–12 mg kg−1. Chemical analysis included loess sediments and extracted porewaters from two specially cored boreholes. Results reveal a large range of porewater As concentrations, being generally higher in the horizons with highest sediment As concentrations. The displaced porewaters have As concentrations ranging up to 7500 μg L−1 as well as exceptionally high concentrations of some other oxyanion species, including V up to 12 mg L−1. The highest concentrations are found in a borehole located in a topographic depression, which is a zone of likely groundwater discharge and enhanced residence time. Comparison of sediment and porewater data does not reveal unequivocally the sources of the As, but selective extract data (acid-ammonium oxalate and hydroxylamine hydrochloride) suggest that much of the As (and V) is associated with Fe oxides. Primary oxides such as magnetite and ilmenite may be partial sources but given the weathered nature of many of the sediments, secondary oxide minerals are probably more important. Extract compositions also suggest that Mn oxide may be an As source. The groundwaters of the region are oxidising, with dissolved O2, NO3 and SO4 normally present and As(V) usually the dominant dissolved As species. Under such conditions, the solubility of Fe and Mn oxides is low and As mobilisation is strongly controlled by sorption–desorption reactions. Desorption may be facilitated by the relatively high-pH conditions of the groundwaters in the region (7.0–8.8) and high concentrations of potential competitors (e.g. V, P, HCO3). PHREEQC modelling suggests that the presence of V at the concentrations observed in the Pampean porewaters can suppress the sorption of As to hydrous Fe(III) oxide (HFO) by up to an order of magnitude. Bicarbonate had a comparatively small competitive effect. Oxalate extract concentrations have been used to provide an upper estimate of the amount of labile As in the sediments. A near-linear correlation between oxalate-extractable and porewater As in one of the cored boreholes investigated has been used to estimate an approximate Kd value for the sediments of 0.94 L kg−1. This low value indicates that the sediments have an unusually low affinity for As
    corecore